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Abstract-Palaeostress estimation from striated fault data is frequently frustrated by the fact that natural fault 
data are heterogeneous in the sense that they cannot satisfactorily be explained by reactivation brought about by 
a single stress tensor. In many instances there is clear evidence to show that striation data can record the effects of 
multiple stress events. Any attempt to find the tensor which best fits (or explains) such dynamically mixed data 
sets risks determining a spurious stress state which is some form of compromise between the real stress states 
corresponding to different tectonic phases. To avoid this problem a strategy is proposed here which involves an 
initial separation of the raw data into coherent sub-sets prior to formal stress inversion. This separation is 
performed by assigning attributes to each fault which describe the fault’s compatibility with trial stress tensors. 
Using these attributes faults can be grouped into dynamically-homogeneous families using the statistical 
techniques of cluster analysis. 

INTRODUCTION 

Since the pioneering paper by Carey & Brunier (1974) 
several computational methods have been devised for 
estimating palaeostresses in brittle tectonic environ- 
ments from field measurements of fault planes and 
associated slip lineations (e.g. Angelier 1979, Etcheco- 
par et al. 1981, Michael 1984, Hardcastle & Hills 1991). 
The majority of these are founded on three critical 
assumptions: 

1. 

2. 

3. 

Fault slip recorded by the measured striae was 
parallel to direction of resolved shear stress on the 
fault. 
Slip on the different faults is mutually indepen- 
dent. 
The stresses which induced slip on the faults can be 
considered homogeneous on a macroscopic scale. 

Although many of the above techniques have become 
widely accepted and are often applied for palaeostress 
analysis, the highly restrictive nature of the assumptions 
means that (a) the methodology is only appropriate in 
certain geological situations, and (b) the results pro- 
duced should always be critically evaluated. 

The third assumption listed is particularly limiting 
since field evidence suggests that instances of multiple 
phases of fault reactivation are commonplace in all but 
the youngest of sediments. If data collected from areas 
which have been subjected to multiple stress events are 
analysed using standard techniques for stress analysis, 
the obtained results are likely to be of doubtful value, 
giving at best a calculated stress configuration which is 

some sort of compromise between the different real 
stress tensors represented in the data. Under such 

*Present address: D. Stlir Geological Institute, Mlynsk6 dolina 1, 
81704 Bratislava, Slovak Republic. 

circumstances the exercise degenerates from one of 
stress estimation to merely a vague statistical description 
of the fault data. This paper addresses the vital issue of 
analysing stresses from mixed data sets and proposes a 
new approach involving the separation of the sample of 
faults into homogeneous sub-sets prior to stress inver- 
sion . 

EXISTING APPROACHES TO ANALYSIS OF 
MIXED DATA SETS 

In several routines currently available for stress inver- 
sion of fault/slip data (Carey & Brunier 1974, Angelier 
1979, Etchecopar et al. 1981, Armijo et al. 1982) the 
stress tensor is sought which best ‘explains’ the observed 
movement vectors on the measured faults (see Angelier 
1994 for a comprehensive review of different methods 
for seeking the tensor). The success with which a given 
tensor accounts for the recorded slip direction indicators 
is normally quantified as the sum of the squares of some 
measure of deviation between the observed striations 
and those predicted from the stress tensor being con- 
sidered. Once a best tensor is found the most deviant 
faults can be identified and, if necessary excluded from 
further analysis. 

Although this approach may be acceptable for data 
consisting for faults whose slip was induced by a com- 
mon stress state, it is an unsound strategy for dealing 
with dynamically-mixed data sets. For such a method to 
succeed it needs to correctly identify outliers; those fault 
data perhaps originating from secondary stress phases. 
As Will & Powell (1991) point out, the presence of such 
outliers can have a profound effect on the ultimate best- 
fit tensor which is calculated. If this estimated tensor 
does not correspond to a real one then the identification 
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of outliers will usually also be incorrect. WilI 6% Powell’s 
(1991) suggested remedy, to select the tensor which 
minimises the median of the squares of the striation 
misfits, may help to alleviate the problem in cases where 
a single set of faults is contaminated by a relatively minor 
proportion of rogue faults. It cannot however solve the 
problem of a truly mixed data set involving representa- 
tives from two (or more) tensors since the best@ stress 
tensor concept is meaningless in that context. The same 
limitation is possessed by similar methods using differ- 
ent criteria for quantifying best-fit (Michael 1984, 
Gephart & Forsyth 1984, Gephart 1990). 

A similar drawback is associated with the procedures 
used by Galindo-Zaldivar & Gonzalez-Lodeiro (1988) 
and Hardcastle (1989) which use a grid-search method of 
stress inversion for the analysis of heterogeneous fault 
data samples. This involves considering in turn a large 
number of different tensors in order to discover those 
which are capable of explaining a high proportion of the 
orientation data taken from faults in the field. The 
tensors which explain the greatest number of faults, i.e. 
produce deviations lower than a prescribed threshold, 
are assumed to be favoured candidates for the real 
palaeostresses. However this assumption has never been 
validated. Again it is probable that the tensors located 
by this process are hybrid ones with properties which 
position them between the real geological solutions. 

The above discussion suggests that a strategy which 
allows faults to be assigned into sub-sets prior to stress 
inversion is likely to be more satisfactory. Simon- 
Gomez’s (1986) graphical method (see also the refine- 
ment of it by Fry 1992) is able to identify groups of 
related faults. Sim<in-Gomez’s Y-R diagram is a plot of 
orientation and stress ratio of all stress tensors compat- 
ible with a given striated fault. On the Y-R diagram each 
fault is shown as a curve, and faults belonging to the 
same sub-set are identified by a common intersection of 
their respective curves. However, because of the 4- 
dimensional nature of the problem, only special stress 
configuration (with one principal stress axis vertical) can 
be dealt with by this method. 

Kleinspehn et al. (1989) suggest a way of extracting 
multiple stress tensors from a fault population which 
involves first identifying the latest stress tensor from an 
analysis of faults present in stratigraphically higher 
units. This approach can be adopted only when the 
period of sedimentation spans several tectonic events. 

Angelier & Manoussis (1980) and Huang (1988) de- 
scribe procedures for the automatic separation of fault 
sub-sets. These involve assumptions which make them 
valid only for the treatment of Andersonian faults, i.e. 
faults with special, symmetrical orientation with respect 
to the principal stress axes. 

Like the last-mentioned routines, the method we 
propose in this paper for the separation of sub-groups 
from heterogeneous collections of data utilises the statis- 
tical procedures of cluster analysis. In philosophy how- 
ever our method is quite different and is not limited to 
the treatment of conjugate faults but can be used on data 
from reactivated faults with general orientations. 

THE NEW STRATEGY 

The method of fault set separation adopted here is 
based on cluster analysis, a statistical technique for 
identifying groups of entities from within a sample. The 
analysis is performed in four stages. 

(a) Each fault plane together with its associated slip 
direction in the sample is described in terms of a number 
of variables relating to its orientational properties and its 
compatibility with a large number of potential stress 
tensors. 

(b) All possible pairs of faults are compared on the 
basis of the above variables and their degree of similarity 
expressed quantitatively. 

(c) The close similarity between certain pairs of faults 
is used as a basis of the nucleation of fault sub-sets or 
clusters which grow progressively by the merger with 
other clusters. These clusters finally constitute the domi- 
nant sub-sets consisting of faults with a high degree of 
mutual dynamic compatibility. 

(d) These sub-sets are analysed separately using one 
of the existing stress inversion routines. 

Defining f&t attributes 

The input data from each fault are considered in 
relation to a large number of different stress tensors. For 
each tensor, a calculation is made of the ideal orien- 
tation of the striation on a plane with the orientation of a 
measured fault plane. Mutual compatibility between the 
tensor and the fault is determined on the basis of angular 
difference between the calculated striation and the 
actual (measured) one. The tensor is considered to ‘fit’ 
the fault if the deviation in striation pitch does not 
exceed a prescribed angle of tolerance (a). In this way 
each fault can be described by a string of binary attri- 
butes referring to its compatibility (fit or non-fit) with a 
variety of tensors (Table 1). 

We appreciate that this criterion for matching faults to 
stress tensors is simple; replacing it with a more sophisti- 
cated measure of misfit (e.g. one that takes into account 
the relative magnitudes of shear stress on the fault into 
account) will not affect the general philosophy of the 
method described here. 

The tensors used for the purpose of defining fault 
attributes need to meet certain requirements if they are 
to produce a set of characteristics which are not biased 
towards certain faults. The set of tensors used have to (a) 
be variable in terms of both axial orientations and shape 
factor, (b) possess isotropy as a set with respect to these 
properties, and (c) be large in number. 

To obtain a set of variable tensor orientations, ol 
orientations were chosen according to a spherical grid 
pattern with plunges incrementing in angular intervals of 
p. To ensure isotropy of these directions the azimuth of 
the plunge was varied as a function of the plunge angle. 
For each selected ol orientation a variety of crs directions 
is produced by incremental rotations through an angle /3 
about the ul axis. The angle /3 is a measure of the grid 
spacing and controls the total number of tensors exam- 
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Table 1. (a) Assigning descriptive attributes to each fault on the basis of its compatibility with a large number 
of tensors. Each fault is given binary scores which are later used for comparing fault pairs; + = fault fits the tensor, 
- = fault does not fit tensor. (b) The comparison of faults using their dynamic attributes: ng is the number of cases 
where faults i and j both fit a tensor, d, is the number of cases where neither fault fits a tensor. S,, the coefficient of 
similarity defined in equation (1) for a tolerance angle, a, of 30” and a number of tensors n = 7, expresses the degree 

of similarity between a pair of faults, fault i and fault j. 

(a) 

Tensor 1 Tensor 2 Tensor 3 Tensor 4 Tensor 5 Tensor 6 Tensor 7 

Fault 1 
Fault 2 
Fault 3 
Fault 4 

+ _ + + - - - 

+ + + + _ _ + 
- - + - + + + 
_ - - - + + + 

Fault pair 1 & 2: aI = 3, dlZ = 2, N = 7, a = 30”, SL2 = 0.61 
Faultpair1&3:ars=I,dr3=1,N=7,a=30”,SI~=0.17 
Fault pair 1 & 4: aI4 = 0, d14 = 1, N = 7, a = 30”, S14 = 0.0066 

Fault pair 2 & 3, etc. 

ined. For each axial orientation, 20 tensors are exam- 
ined, each with a different shape factor @ = (u* - os)l(oi 
- us) (see Angelier 1994) covering the range from # = 0 
(axial compression) to # = 1 (axial extension). 

With regard to the choice of grid spacing /3, a value is 
recommended which is as low as possible, though com- 
puter time may place a practical lower limit on this. To 
increase the computing efficiency the properties of the 
inverse stress tensor are utilised in the calculations (see 
Appendix). For any given tensor (ui, 02, 0s) the corre- 
sponding inverse is defined as one which is coaxial with it 
but with o1 and o3 interchanged and with a @ value (@‘) 
equalling (ai - u2)/(a1 - ~a). That is #’ , = 1 - 4. It can 
be readily shown (see Appendix) that any given tensor 
and its inverse produce shear stress directions on a given 
plane which are parallel but opposite in sense. This 
means that once the calculation of the ideal striation 
orientation on a fault has been performed for a given 
tensor, the calculation for a second tensor, its inverse, is 
trivial. This tactic effectively doubles the numbers of 
tensors that can be examined in a given period of 
computer time and reduces the effective grid spacing 
from p to /3/d/2. Using this device and an IBM- 
compatible machine with 486-33 processor, a sample of 
30 faults takes some 90 minutes to analyse for an effec- 
tive grid spacing of 10 degrees (40,000 tensors exam- 
ined). 

The computer program FLTCLAN, details of which 
are to be published separately, computes ideal slip 
directions for each fault and each tensor using the 
algorithm of Hardcastle & Hills (1991). At the end of 
this stage several thousand binary variates have been 
calculated for each fault. These allow the comparison of 
the faults in a manner described below. 

Defining similarity between the sampled faults 

The next stage is to express the degree of similarity 
between all possible fault pairs in the sample from a 
comparison of their attributes. Everitt (1980) suggests 
various indices of similarity appropriate for binary vari- 

ables. We have devised a coefficient of similarity which 
is more appropriate to this problem. This is quantified by 
a coefficient of similarity S,, calculated from 

S, = [aij + wdij]l[n - (1 - w)dij] (1) 

where: 
aij = number of tensors that fit faults i and fault j, 
dij = number of tensors which fit neither fault i nor 

fault j, 
a = threshold of angular deviation (in radians) be- 

tween observed striation pitch and that pre- 
dicted for a trial tensor used to decide on 
compatibility, 

w = l/[(z/a) - 112, and 
n = total number of tensors examined. 

The quantities aij and d, are both expressions of 
closeness, but d, is a weaker descriptor because, de- 
pending on the acceptable angle of deviation (a), failing 
to fit is a fault attribute which is easier to acquire than 
fitting. The weighting terms involving w in equation (1) 
above allow for this. S, values range from 0, for pairs of 
faults that are complete opposites, to 1 for complete 
similarity. 

The mutual similarity of faults becomes apparent 
when a similarity matrix is constructed from S, coef- 
ficients. In the illustrative example of Fig. l(a) it is clear 
that fault 5 is more closely allied to fault 3 and fault 4 
than to fault 1 and fault 2. To effect a separation of faults 
into natural sub-groups requires the systematic 
approach described below. 

Organising faults into sub-groups 

There are several possible alternative strategies for 
using the data on pair-wise similarities to decide on the 
division of the sample into sub-groups or clusters (see 
Everitt 1980, pp. 23-58). The one adopted here pro- 
duces excellent results in trials using artificial and natu- 
ral heterogeneous data sets produced by mixing of fault 
data sets compatible with known tensors. 

To effect the division of N faults into sub-sets a 
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1 2 3 4 5 
1 1.00 0.55 0.08 0.08 0.07 
2 0.55 1.00 0.08 0.08 0.07 
3 0.11 0.08 1.00 0.31 0.53 
4 0.07 0.08 0.51 1.00 0.28 

(b) Ranked coefficients of fauIt pairs. 

-_ 
1 2 3 5 

Faults 

- 

dendrogram is constructed (Fig. lc). This is done by 
starting with Nclusters, each consisting of a single fault. 
Clusters grow by incorporating others. The sequence of 
amalgamation of clusters is governed by the S, coef- 
ficients from the similarity matrix arranged in ranked 
order (Fig. lb). The most similar pair of faults, corre- 
sponding to the highest coefficient, are brought together 
into the same cluster by the merger of the clusters to 
which each belongs. The single linkage dendrogram, an 
inverted tree diagram, is a graphical record of the 
sequence of mergers. An average linkage dendrogram 
merges clusters on the basis of the average similarity 
between members of different clusters. This latter vari- 
ant is preferred here because it prevents the coalescence 
of disparate groups by the fortuitous similarity of a single 
pair of faults. 

Although ultimately the process leads to the forma- 
tion of a single group, the branching pattern of the 
dendrogram serves to highlight important associations 
of faults and their hierarchy. The first-order branches of 

Fig. 1. The construction of a dendrogram in a simple example of 5 
faults. (a) Matrix of similarity coefficients, S,,. (b) The ranked list of S, 
values to express closest similarities between pairs. (c) Dendrogram 
constructed from the ranked coefficient. The order in which clusters 
merge is controlled by the ranked similarity coefficients, i.e. the cluster 
including faults 1 and 2 unite first because their similarity St2 is the 
highest (0.55). The faults 1,2 belong to one group; 3,4,5 to the other. 

the inverted tree indicate the membership of the domi- 
nant fault sub-sets. 

Stress inversion from sub-sets 

Once the heterogeneous sample of faults has been 
separated into homogeneous sub-sets by the application 
of the above procedure, palaeostresses can be deter- 
mined from each of the sub-samples using one of the 
several existing routines for fault-slip analysis which are 
well-suited to the treatment of homogeneous data-sets 
(e.g. Etchecopar et al. 1981, Lisle 1988, Angelier 1990). 

TESTING OF THE METHOD 

In order to test the validity of the method we have 
examined its performance when analysing natural data 
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(b) 

Fig. 2. Automatic fault separation (Example 1). (a) Heterogeneous data-set composed on 3 components (23 faults from the 
Cirocha strike-slip zone, Carpathians, 23 faults formed by rotation of latter by 60”, 7 faults from Bridgend, S. Wales). (b) 
The fault groupings distinguished by cluster analysis. The main 3 sub-groups correspond exactly to the subsets used to 

construct the data set. 

sets which have been artificially mixed in order to 
simulate the effects of multiple stress events. 

Example 1. This data-set (Fig. 2a) consists of a sub-set 
of 23 faults measured in the Cirocha strike-slip zone in 
the Carpathians, a second subset (23 faults) produced by 
the rotation of the first sub-set about a vertical axis 
through an angle of 60” and a third subset of 7 faults from 
an extensional (rifting) environment recorded at Trwyn- 
y-Witch, Bridgend, South Wales. Before being com- 
bined these three subsets were separately analysed by 
grid-search stress inversion and the fault striations 
adjusted so as to accord with the best-fit tensor of each 
sub-set. 

The combined data-set was used as input for the 

program FLTCLAN using a grid spacing /3 = 20” and 
threshold angle Q = 30”. The results of the cluster 
analysis are shown as a dendrogram in Fig. 2(b). The 
three primary branches of the tree indicate the correct 
sub-set membership exactly. 

If this had been a real data-set however we would 
clearly not have known the number of tensors involved. 
Our strategy in such circumstances would be to over- 
divide the sample into more subsets and, by computing 
tensors for each, determine whether these groupings are 
meaningful. Sub-groups could be merged if the tensors 
they yield are not significantly different. 

Example 2. This sample consists of two component 
groups; the 23 faults from Cirocha and 7 faults from 
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2 1 5 7 4 16 20 22 12 9 13 17 25 26 24 29 

3 n 6 16 8 11 21 10 1s 19 14 23 28 27 30 

Faults 

Trwyn-y-Witch used in Example 1 (Fig. 3a). Values of 
a = 30“ and /3 = 20” were again used. These data were 
not adjusted in the manner of the first test data-set and so 
still included several natural sources of error. For this 
reason the average degree of similarity between pairs is 
lower than in Example 1; this results in mergers occur- 
ring higher in the dendrogram. In spite of this, the 
separation routine was able to correctly identify the two 
sub-samples (Fig. 3b). 

~x~~~le 3. This consists of four samples of striated 
faults collected from the Cumberland Plateau thrust 
zone, southern Appalachians by Steven Wojtal and 
Jonathan Pershing. The geographical and geological 
setting of the samples (CPLOWl, CPLOW2, CPMIDl 
and CPMID2) together with a palaeostress analysis of 
them is described in Wojtal & Pershing (1991). Their 
analysis was based on the technique of Etchecopar et al. 

Fig. 3. Automatic fault separation (Example 2). (a) Heterogeneous 
data-set constructed by combining data from Cirocha zone (23 faults) 
and T~yn-y-witch sites. (b) Results of the separation procedure 

revealed by a dendrogram. 

(1981), a computer procedure which instead of estimat- 
ing the best-fit tensor for the whole sample, allows the 
user to specify the percentage of faults to be used. 
However a drawback of this approach arises when 
heterogeneous data sets are handled, because the user is 
unlikely to know the fractions of the samples attribu- 
table to the different tensors represented. 

Cluster analysis was carried out on the samples. 
Sample CPLOW2 produced a typical dendrogram (Fig. 
4a). The maximum number of groups that can be dis- 
tinguished is limited by the fact that subgroups of faults 
suitable for stress inversion have a minimum of size of 
around 10. Seven groups were distinguished initially, 
though of these only three (labelled a, b and c) possessed 
sufficient faults for stress estimation. Groups a and c 
yield well-defined tensors (Fig. 4b), with theoretical and 
observed striations misaligned by an average 9 and 10” 
respectively. For group b the corresponding tensor is 
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Sample 
CPLOW2 

f- 

r 

I” (group a 1 H @-UP 

(b) TRANSPORT- 
PARALLEL “GR4VITATIONAL” TRANSVERSE 

COMPRESSION EXTENSION 

CPLOWl 

CPLOW2 

CPMIDl 

CPMID2 

Fig. 4. Automatic fault separation (Example 3). (a) Analysis of striated faults (sample CPLOW2), Cumberland Plateau 
thrust zone, near Dunlap, Tennessee (data supplied by Prof. Steven Wojtal). The dendrogram reveals 3 groups of 
importance (a, b and c). The corresponding tensors indicate (c) transport-parallel compression, (a) vertical uniaxial 
compression and (b) transverse uniaxial extension. (b) Summary of the cluster analysis of 4 samples of striated faults 
(CPLOWl, CPLOW2, CPMIDl, CPMID2) collected by Wojtal & Pershing (1991). Three tensors are distinguished in three 
out of four samples. The transverse extension tensor is the least well defined with high mean angular deviations, see lower 

16 II: LO-6 
left of each stereogram. n = Sub-sample size; @ is the stress ratio. 
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poor, with an average deviation of 29”. This latter group 
also has a different signature on the dendrogram, char- 
acterised by linkage of clusters only at a late stage. 

When all four samples are analysed and the obtained 
tensors compared (Fig. 4b), three tensors are found to 
be common to three out of four samples. One of these 
equating to transport-parallel compression corresponds 
to the first tensor identified by Wojtal 
& Pershing (1991). Another tensor differential here can 
be referred to as gravitational (a vertical uniaxial com- 
pression with low @) and matches fairly well the second 
tensor of Wojtal & Pershing (1991). The third is an 
orogenetically-transverse extension (uniaxial extension, 
high @) tensor of lesser quality and not distinguished by 
Wojtal & Pershing. 

The degree of success with which the method is able to 
sort out heterogeneous fault sets will in general depend 
on (a) the ‘difference’ between the tensors represented 
in the sample in terms of axial orientation and @ value, 
and (b) the quality of the fault/striation data in their 
degree of fit to a component tensor. Fortunately the 
success of the inversion process does not depend on a 
perfect partition of the fault clusters; existing routines 
for stress inversion are designed to cope with a small 
proportion of rogue data. 

CONCLUSIONS 

Striation analysis has proved itself in recent years to 
be a powerful tool for structural studies in brittle tec- 
tonic regimes but the inability of present methodologies 
to handle, in a satisfactory manner, fault data originat- 
ing from multiple stress events places severe limits on 
the situations in which the analysis can be sensibly 
applied. 

Traditional techniques used to determine individual 
stress tensors represented in mixed fault/slip datasets are 
likely to suffer from problems akin to those encountered 
when trying to recognize the parameters of Gaussian 
distributions from mixed samples taken from two or 
more such distributions. Strategies can easily lead to 
spurious, hybrid solutions which in turn hinder the 
correct separation of the data into coherent classes. 

The new procedure suggested here for tackling the 
problem involves describing each fault in the sample by a 
set of variables which allow sub-sets of faults to be 
distinguished. The variables chosen to describe the 
faults are not the faults’ simple orientational parameters 
(e.g. strike, dip, pitch of striation) but are dynamic 
attributes relating more directly to the stress tensors 
they are compatible with. 

Hierarchical cluster analysis in which groups are 
identified from dendrograms has proved to be a highly 
efficient way of separating out families of faults in trials 
involving artificial data and natural data which has been 
artificially mixed. 

Finally, our procedure is automatic in the sense that 
additional information derived from field observations 
regarding the approximate orientation of one or more of 

palaeostress tensors is not a pre-requisite for the appli- 
cation of the technique. This does not mean that we do 
not value such information. On the contrary, such infor- 
mation will play a vital part in future testing of the 
described method. 
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(us - u&m, (at - a+, (9 - q)lm (Al, see Jaeger 1962, p. 18) 

Simplifying the direction ratios by setting us = 0, ur, = 1 and intro- 
ducing r$ [= (u* - us)/(uI - us)] gives 

APPENDIX 

Inverse stress tensor 

For any given stress tensor (at, oa, q, r$) we define the inverse 
tensor as one which has co-axial orientation but with ot and os 
interchanged and a stress difference ratio, @’ equalling 1 - $J. 

Let 1, m, n be the direction cosines of the plane’s normal N referred 
to axes chosen to coincide with or, os, as axes resp, so that the 
components of the stress vector S acting on the fault plane are all, aam, 
qn. Let the 0 vector be the normal of the plane which contains this 
stress vector X and the fault plane’s normal N; it is equivalent to 

-f$ mn, In, (@ - 1)Zm (A2) 

The 0 vector lies in the fault plane at right angles to the direction of 
resolved shear stress in the fault plane. The 0’ vector for the inverse 
stress tensor is given by interchanging ut and us and changing the stress 
ratio to (1 - I$) 

@ mn, -In, -(@ - 1)lm (A3) 

Hence for any given fault plane the 0 and 0’ vectors for the stress 
tensor and its inverse, respectively, are parallel. The shear stress 
directions will therefore be parallel though sign convention indicates 
that their senses are reversed. 


